3.602 \(\int \frac {(a+b \tan (e+f x))^3}{(d \sec (e+f x))^{11/2}} \, dx\)

Optimal. Leaf size=218 \[ \frac {10 a \left (3 a^2+2 b^2\right ) \tan (e+f x)}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^2(e+f x) \left (2 b \left (7 a^2+2 b^2\right )-a \left (9 a^2-b^2\right ) \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}+\frac {10 a \left (3 a^2+2 b^2\right ) \sec ^2(e+f x)^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}} \]

[Out]

10/77*a*(3*a^2+2*b^2)*(cos(1/2*arctan(tan(f*x+e)))^2)^(1/2)/cos(1/2*arctan(tan(f*x+e)))*EllipticF(sin(1/2*arct
an(tan(f*x+e))),2^(1/2))*(sec(f*x+e)^2)^(3/4)/d^4/f/(d*sec(f*x+e))^(3/2)+10/77*a*(3*a^2+2*b^2)*tan(f*x+e)/d^4/
f/(d*sec(f*x+e))^(3/2)-2/11*cos(f*x+e)^4*(b-a*tan(f*x+e))*(a+b*tan(f*x+e))^2/d^4/f/(d*sec(f*x+e))^(3/2)-2/77*c
os(f*x+e)^2*(2*b*(7*a^2+2*b^2)-a*(9*a^2-b^2)*tan(f*x+e))/d^4/f/(d*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3512, 739, 778, 199, 231} \[ \frac {10 a \left (3 a^2+2 b^2\right ) \tan (e+f x)}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^2(e+f x) \left (2 b \left (7 a^2+2 b^2\right )-a \left (9 a^2-b^2\right ) \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}+\frac {10 a \left (3 a^2+2 b^2\right ) \sec ^2(e+f x)^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^3/(d*Sec[e + f*x])^(11/2),x]

[Out]

(10*a*(3*a^2 + 2*b^2)*EllipticF[ArcTan[Tan[e + f*x]]/2, 2]*(Sec[e + f*x]^2)^(3/4))/(77*d^4*f*(d*Sec[e + f*x])^
(3/2)) + (10*a*(3*a^2 + 2*b^2)*Tan[e + f*x])/(77*d^4*f*(d*Sec[e + f*x])^(3/2)) - (2*Cos[e + f*x]^4*(b - a*Tan[
e + f*x])*(a + b*Tan[e + f*x])^2)/(11*d^4*f*(d*Sec[e + f*x])^(3/2)) - (2*Cos[e + f*x]^2*(2*b*(7*a^2 + 2*b^2) -
 a*(9*a^2 - b^2)*Tan[e + f*x]))/(77*d^4*f*(d*Sec[e + f*x])^(3/2))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 739

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[1/((p + 1)*(-2*a*c)), Int[(d + e*x)^(m - 2)*Simp[a*e^2*(m - 1) -
 c*d^2*(2*p + 3) - d*c*e*(m + 2*p + 2)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^
2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 778

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*(e*f + d*g) -
(c*d*f - a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(2*a*c*(p + 1)),
Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ[p, -1]

Rule 3512

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(d^(2
*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2]))/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (e+f x))^3}{(d \sec (e+f x))^{11/2}} \, dx &=\frac {\sec ^2(e+f x)^{3/4} \operatorname {Subst}\left (\int \frac {(a+x)^3}{\left (1+\frac {x^2}{b^2}\right )^{15/4}} \, dx,x,b \tan (e+f x)\right )}{b d^4 f (d \sec (e+f x))^{3/2}}\\ &=-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}}+\frac {\left (2 b \sec ^2(e+f x)^{3/4}\right ) \operatorname {Subst}\left (\int \frac {(a+x) \left (\frac {1}{2} \left (4+\frac {9 a^2}{b^2}\right )+\frac {5 a x}{2 b^2}\right )}{\left (1+\frac {x^2}{b^2}\right )^{11/4}} \, dx,x,b \tan (e+f x)\right )}{11 d^4 f (d \sec (e+f x))^{3/2}}\\ &=-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^2(e+f x) \left (2 b \left (7 a^2+2 b^2\right )-a \left (9 a^2-b^2\right ) \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}+\frac {\left (15 a \left (2+\frac {3 a^2}{b^2}\right ) b \sec ^2(e+f x)^{3/4}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+\frac {x^2}{b^2}\right )^{7/4}} \, dx,x,b \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}\\ &=\frac {10 a \left (3 a^2+2 b^2\right ) \tan (e+f x)}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^2(e+f x) \left (2 b \left (7 a^2+2 b^2\right )-a \left (9 a^2-b^2\right ) \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}+\frac {\left (5 a \left (2+\frac {3 a^2}{b^2}\right ) b \sec ^2(e+f x)^{3/4}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+\frac {x^2}{b^2}\right )^{3/4}} \, dx,x,b \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}\\ &=\frac {10 a \left (3 a^2+2 b^2\right ) F\left (\left .\frac {1}{2} \tan ^{-1}(\tan (e+f x))\right |2\right ) \sec ^2(e+f x)^{3/4}}{77 d^4 f (d \sec (e+f x))^{3/2}}+\frac {10 a \left (3 a^2+2 b^2\right ) \tan (e+f x)}{77 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^4(e+f x) (b-a \tan (e+f x)) (a+b \tan (e+f x))^2}{11 d^4 f (d \sec (e+f x))^{3/2}}-\frac {2 \cos ^2(e+f x) \left (2 b \left (7 a^2+2 b^2\right )-a \left (9 a^2-b^2\right ) \tan (e+f x)\right )}{77 d^4 f (d \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.46, size = 296, normalized size = 1.36 \[ \frac {\sec ^3(e+f x) (a+b \tan (e+f x))^3 \left (\frac {a \left (347 a^2+103 b^2\right ) \sin (2 (e+f x))}{1232}+\frac {1}{308} a \left (16 a^2-15 b^2\right ) \sin (4 (e+f x))+\frac {1}{176} a \left (a^2-3 b^2\right ) \sin (6 (e+f x))-\frac {b \left (315 a^2+71 b^2\right ) \cos (2 (e+f x))}{1232}-\frac {1}{616} b \left (63 a^2+b^2\right ) \cos (4 (e+f x))-\frac {1}{176} b \left (3 a^2-b^2\right ) \cos (6 (e+f x))-\frac {1}{616} b \left (105 a^2+31 b^2\right )\right )}{f (d \sec (e+f x))^{11/2} (a \cos (e+f x)+b \sin (e+f x))^3}+\frac {10 a \left (3 a^2+2 b^2\right ) F\left (\left .\frac {1}{2} (e+f x)\right |2\right ) (a+b \tan (e+f x))^3}{77 f \cos ^{\frac {5}{2}}(e+f x) (d \sec (e+f x))^{11/2} (a \cos (e+f x)+b \sin (e+f x))^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])^3/(d*Sec[e + f*x])^(11/2),x]

[Out]

(10*a*(3*a^2 + 2*b^2)*EllipticF[(e + f*x)/2, 2]*(a + b*Tan[e + f*x])^3)/(77*f*Cos[e + f*x]^(5/2)*(d*Sec[e + f*
x])^(11/2)*(a*Cos[e + f*x] + b*Sin[e + f*x])^3) + (Sec[e + f*x]^3*(-1/616*(b*(105*a^2 + 31*b^2)) - (b*(315*a^2
 + 71*b^2)*Cos[2*(e + f*x)])/1232 - (b*(63*a^2 + b^2)*Cos[4*(e + f*x)])/616 - (b*(3*a^2 - b^2)*Cos[6*(e + f*x)
])/176 + (a*(347*a^2 + 103*b^2)*Sin[2*(e + f*x)])/1232 + (a*(16*a^2 - 15*b^2)*Sin[4*(e + f*x)])/308 + (a*(a^2
- 3*b^2)*Sin[6*(e + f*x)])/176)*(a + b*Tan[e + f*x])^3)/(f*(d*Sec[e + f*x])^(11/2)*(a*Cos[e + f*x] + b*Sin[e +
 f*x])^3)

________________________________________________________________________________________

fricas [F]  time = 1.07, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b^{3} \tan \left (f x + e\right )^{3} + 3 \, a b^{2} \tan \left (f x + e\right )^{2} + 3 \, a^{2} b \tan \left (f x + e\right ) + a^{3}\right )} \sqrt {d \sec \left (f x + e\right )}}{d^{6} \sec \left (f x + e\right )^{6}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(11/2),x, algorithm="fricas")

[Out]

integral((b^3*tan(f*x + e)^3 + 3*a*b^2*tan(f*x + e)^2 + 3*a^2*b*tan(f*x + e) + a^3)*sqrt(d*sec(f*x + e))/(d^6*
sec(f*x + e)^6), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{3}}{\left (d \sec \left (f x + e\right )\right )^{\frac {11}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(11/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^3/(d*sec(f*x + e))^(11/2), x)

________________________________________________________________________________________

maple [C]  time = 1.10, size = 430, normalized size = 1.97 \[ -\frac {2 \left (21 \left (\cos ^{6}\left (f x +e \right )\right ) a^{2} b -7 \left (\cos ^{6}\left (f x +e \right )\right ) b^{3}-7 \left (\cos ^{5}\left (f x +e \right )\right ) \sin \left (f x +e \right ) a^{3}+21 \left (\cos ^{5}\left (f x +e \right )\right ) \sin \left (f x +e \right ) a \,b^{2}-15 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \cos \left (f x +e \right ) a^{3}-10 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \cos \left (f x +e \right ) a \,b^{2}+11 \left (\cos ^{4}\left (f x +e \right )\right ) b^{3}-9 \left (\cos ^{3}\left (f x +e \right )\right ) \sin \left (f x +e \right ) a^{3}-6 \left (\cos ^{3}\left (f x +e \right )\right ) \sin \left (f x +e \right ) a \,b^{2}-15 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a^{3}-10 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) a \,b^{2}-15 \cos \left (f x +e \right ) \sin \left (f x +e \right ) a^{3}-10 \cos \left (f x +e \right ) \sin \left (f x +e \right ) a \,b^{2}\right )}{77 f \cos \left (f x +e \right )^{6} \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {11}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(11/2),x)

[Out]

-2/77/f*(21*cos(f*x+e)^6*a^2*b-7*cos(f*x+e)^6*b^3-7*cos(f*x+e)^5*sin(f*x+e)*a^3+21*cos(f*x+e)^5*sin(f*x+e)*a*b
^2-15*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*c
os(f*x+e)*a^3-10*I*cos(f*x+e)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(
1+cos(f*x+e)))^(1/2)*a*b^2+11*cos(f*x+e)^4*b^3-9*cos(f*x+e)^3*sin(f*x+e)*a^3-6*cos(f*x+e)^3*sin(f*x+e)*a*b^2-1
5*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*a^3-1
0*I*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*a*b^2
-15*cos(f*x+e)*sin(f*x+e)*a^3-10*cos(f*x+e)*sin(f*x+e)*a*b^2)/cos(f*x+e)^6/(d/cos(f*x+e))^(11/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3/(d*sec(f*x+e))^(11/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^3}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{11/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x))^3/(d/cos(e + f*x))^(11/2),x)

[Out]

int((a + b*tan(e + f*x))^3/(d/cos(e + f*x))^(11/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**3/(d*sec(f*x+e))**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________